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ABSTRACT

Investigating the geometry of the tangent bundle (TM, π,M) over a
smooth manifold M is one of the most significant fields of modern dif-
ferential geometry and has remarkable applications in various problems
specifically in the theory of physical fields. This significance provides a
constructive setting for the development of novel notions and geometric
structures such as systems of second order differential equations (SODE),
metric structures, semisprays and nonlinear connections. Accordingly
analysis of above mentioned concepts can be considered as a powerful
tool for the thorough investigation of the geometric properties of a tan-
gent bundle. This paper is devoted to exhaustive geometric analysis of
totally geodesic SODE submanifolds. Investigating the induced SODE
structure on submanifolds is our main objective in this paper. Indeed, it
is demonstrated that the metric which is obtained from the metrizability
of a given semispray, plays a fundamental role in inducing SODE struc-
ture on submanifolds. Particularly, a necessary and sufficient condition
for an SODE submanifold to be totally geodesic is presented.

Keywords: SODE, semispray, dynamical covariant derivative, metriz-
ability, nonlinear connection, totally geodesic submanifolds.
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1. Introduction

Differential geometry of the total space of a manifold’s tangent bundle has
its origins in diverse fields of study such as Calculus of Variations, Differential
Equations, Theoretical Physics and Mechanics. In recent years, it can be re-
garded as a distinguished domain of differential geometry and has noteworthy
applications in specific problems from mathematical biology and mainly in the
theory of physical fields Antonelli et al. (1993), Antonelli and Miron (1996),
Beil (2003), Miron (1986), Miron and Anastasiei (1994, 1997). This signif-
icance provides a constructive setting for the development of novel notions
and geometric structures such as systems of second order differential equations
(SODE), metric structures, semisprays and nonlinear connections. Accordingly
analysis of above mentioned concepts can be considered as a powerful tool for
the thorough investigation of the geometric properties of a tangent bundle.

From the historical point of view, a principled investigation of the differen-
tial geometry of tangent bundles stated with Dombrowski (1962), Kobayashi
and Nomizu (1969) and Yano and Ishihara (1973) in 1960’s and 1970’s. Specif-
ically, Crampin (1971) and Grifone (1972) have considerably contributed to
the geometry of the tangent bundle by introducing the notion of the nonlin-
ear connection on the tangent bundle of a system of second order differential
equations. In Miron (1986) the concept of generalized Lagrange spaces has
been exhaustively introduced and investigated. Moreover, regarding covariant
derivatives and geometric objects that can be associated to a system of second
order differential equations, comprehensive researches have been fulfilled in An-
tonelli and Bucataru (2003), Crampin et al. (1996), Krupkova (1997), Lackey
(1999), Sarlet (1982)(refer to Bucataru and Miron (2007) for more details).

In physical samples, regular Lagrangians, Finsler metrics and generalized
Lagrange metrics induce various metric structures on TM which can be induced
via distinct metric structures from Relativistic Optics or by Ehlers-Pirani-
Schield axiomatic system. Metric geometry of TM associated to these met-
ric structures has been exhaustively analyzed in Bucataru and Miron (2007).
Among these geometries, in Bucataru and Miron (2007) the following specific
aspects are mainly emphasized: The geometry of a Lagrange space can be con-
structed via the principles of Analytical Mechanics. Taking into account the
fact that the geometry of a Finsler space is a special form of the Lagrange
geometry, this geometry can be successfully constructed through the princi-
ples of Theoretical Mechanics. Since methods from Riemannian geometry are
not sufficient for investigation of the geometry of generalized Lagrange spaces,
one has to approach it as metric geometry on TM . Furthermore, geometric
properties from Calculus of Variations can be thoroughly analyzed through the
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corresponding semispray and its differential geometry.

In recent years, the problem of metrizability has been investigated from
several aspects. Indeed a semispray is called metrizable if the paths of the
semispray are just the geodesics of some metric space. For a given arbitrary
SODE one can associate a nonlinear connection and the corresponding dynam-
ical covariant derivative. In this paper, we have applied the metric associated
to a given SODE in order to induce a nonlinear connection on the submani-
folds of the base manifold. Indeed, we have defined another SODE structure on
the submanifolds via this nonlinear connection. Mainly, a significant geomet-
ric characterization of totally geodesic submanifolds is determined by inducing
SODE structure on submanifolds.

2. Inverse Problem of the Calculus of
Variations

A system of second order differential equations (SODE) on a configuration
manifold M , whose associated coefficient functions do not depend explicitly
on time, can be analyzed as a particular vector field on TM , which is called a
semispray. In this section, we begin with a semispray S and analyze the induced
geometric structures that will determine its corresponding geometric invariants.
These geometric structures are defined by applying the nonlinear connection
induced via a semispray. One of the significant tools in this section and in
the whole paper is the dynamical covariant derivative induced by a semispray
S. The dynamical covariant derivative we propose here, is associated to a
given SODE and a nonlinear connection which is not fixed yet. In this article,
we determine the nonlinear connection by requiring the compatibility of the
dynamical covariant derivative with some corresponding geometric structures.
Let M be a real n - dimensional smooth manifold and TM be its induced
tangent bundle. The notion of semispray on the total space TM is related to
the second order ordinary differential equation (SODE) on the base manifold
M ,

d2xi

dt2
+ 2Gi(x,

dx

dt
) = 0, i = 1, · · · , n. (1)

These equations on TM can be written as :

dyi

dt
+ 2Gi(x, y) = 0, yi =

dxi

dt
, i = 1, · · · , n. (2)

On the other hand, the equation (2) are the integral curves of the vector field

S = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
, i = 1, · · · , n. (3)
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If S is a semispray with the coefficients Gi(x, y), then the functions Gij(x, y) =
∂Gi

∂yj are the coefficients of the nonlinear connection N .
The problem of compatibility between a system of second order differential
equations and a metric structure on tangent bundle, has been studied by many
authors and it is known as one of the Helmholtz conditions from the inverse
problem of Lagrangian mechanic refer to Bucataru (2007), Bucataru and Miron
(2007), Crasmareanu (2009), Sarlet (1982). The inverse problem of the cal-
culus of variations can be formulated as follows: Under what conditions the
solutions of an arbitrary autonomous system of second order differential equa-
tions (SODE) defined on an n - dimensional manifold M , are solutions of the
Euler-Lagrange equations

d

dt

( ∂L
∂ẋi

)
− ∂L

∂xi
= 0, i ∈ {1, 2, · · · , n}, (4)

for some Lagrangian function L. It is worth mentioning that throughout this
paper we will not require the regularity of the Lagrangian functions and as a
consequence, the given SODE (2) and the Euler-Lagrange equations (4) might
not be equivalent. An approach to the inverse problem of the calculus of
variations applies the Helmholtz conditions. These metrizability conditions are
necessary and sufficient for the existence of a multiplier matrix gij(x, ẋ) such
that

gij(x, ẋ)

(
d2xj

dt2
+ 2Gj(x, ẋ)

)
=

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
, i = 1, · · · , n. (5)

for some Lagrangian function L(x, ẋ).

Definition 2.1. The dynamical covariant derivative associated to the semis-
pray S = yi ∂

∂xi − 2Gi(x, y) ∂
∂yi is defined as follows:

∇d : Γ(V TM) −→ Γ(V TM)

∇d(Xi ∂

∂yi
) := (S(Xi) +GijX

j)
∂

∂yi
, i, j = 1, · · · , n.

∇d satisfies the following conditions:
(a) : ∇d( ∂

∂yi ) = Gji
∂
∂yj

(b) : ∇d(X + Y ) = ∇dX +∇dY
(c) : ∇dfX = S(f)X + f∇dX
for all f ∈ C∞(TM) and X,Y ∈ Γ(V TM).

Particularly, for each GL-metric g, we can define:

∇dg(X,Y ) = S(g(X,Y ))− g(∇dX,Y )− g(X,∇dY ) (6)
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Definition 2.2. The semispray S is called metric with respect to metric g if
∇dg = 0, this is locally expressed as follows:

S(gij) = gikG
k
j + gkjG

k
i , i, j, k = 1, · · · , n. (7)

In this case, we call g the metric associated to the semispray S.

3. Characterization of Totally Geodesic
Submanifolds via Inducing SODE Structure

3.1 Induced Nonlinear Connection

Let M̃m be an immersed submanifold of Mm+n such that ϕ : M̃ −→ M
is an immersion and ϕ(u) = (x1(u), ..., xm+n(u)), where u = (u1, ..., um) and
xi, i ∈ {1, ...,m+ n} are smooth functions (differentiable of class C∞). So we
have:

ϕ∗ : TM̃ −→ TM

(uα, vα) 7−→ (xi(u), yi(u, v))

and

(a) : yi(u, v) = Biαv
α ; (b) : Biα =

∂xi

∂uα
;

(c) : Biαβ =
∂2xi

∂uα∂uβ
; (d) : Biα0 = Biαβv

β .

(8)

Let S be a semispray which is locally represented as S = yi ∂
∂xi − 2Gi(x, y) ∂

∂yi

and let N = (Gij = ∂Gi

∂yj ) be the nonlinear connection associated to S. Assume
that S is a metrizable semispray, due to Bucataru’s definition, i.e. there exists
a metric g, such that the following relation holds:

S(gij) = gikG
k
j + gkjG

k
i . (9)

Remark: Note that through out this section we mean by g, the metric
which is obtained from the metrizability of the semispray S. Moreover, it is
worth mentioning that throughout this section the ranges of the indices are as
follows: i, j, k ∈

{
1, · · · ,m+n

}
, α, β ∈

{
1, · · · ,m

}
and a, b ∈

{
m+1, · · · ,m+

n
}
.
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The metric (gij(x)) on TM induces a Riemannian metric g̃ on TM̃ such that

g̃αβ(u) = gij(x(u))Bijαβ , α, β = 1, · · · ,m. (10)

where Bijαβ = BiαB
j
β .

Let M ′ = TM − {0} and M̃ ′ = TM̃ − {0} and {U, xi, yi}, {Ũ , uα, vα} be
coordinate systems on M ′ and M̃ ′ respectively, and Ũ = U ∩ϕ∗(M̃ ′), then the
natural frame fields { ∂

∂uα ,
∂
∂vα } and {

∂
∂xi ,

∂
∂yi } on M̃

′ and M ′ resp. are related
on Ũ by Bejancu and Farran (2000):

∂

∂uα
= Biα

∂

∂xi
+Biα0

∂

∂yi
(11)

∂

∂vα
= Biα

∂

∂yi
(12)

where Biα0 = Biαβv
β .

Now respect to the metric g on VM ′, we consider the orthogonal complement
of V M̃ ′ as follows:

VM ′ = V M̃ ′ ⊕ (V M̃ ′)⊥ (13)

Let {Ba = Bia
∂
∂yi } be a local field of orthonormal frames in (V M̃ ′)⊥ with

respect to g. We assume that Ba, a = m+ 1, ...,m+ n are spacelike. Hence,
we have : (a) : g(

∂

∂vα
, Ba) = 0,

(b) : g(Ba, Bb) = δab. α = 1, ...,m a, b = m+ 1, ...,m+ n.

(14)

These relations are locally equivalent to:

(a) : gijB
i
αB

j
a = g

( ∂

∂yi
,
∂

∂yj

)
BiαB

j
a = g

(
Biα

∂

∂yi
, Bja

∂

∂yj

)
= g
( ∂

∂vα
, Ba

)
= 0,

(b) : gijB
i
aB

j
b = g

( ∂

∂yi
,
∂

∂yj

)
BiaB

j
b = g

(
Bia

∂

∂yi
, Bjb

∂

∂yj

)
= g
(
Ba, Bb

)
= δab.

α = 1, ...,m , a, b = m+ 1, ...,m+ n.

(15)
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If [BiαB
i
a] is the transition matrix from natural frame fields { ∂

∂y1 , ...,
∂

∂ym+n }
on VM ′ to frame fields { ∂

∂v1 , ...,
∂

∂vm , Bm+1, ..., Bm+n} adapted to (13), and if
[Bαi B

a
i ] is the inverse of the matrix [BiαB

i
a], we have:

Bαi B
i
β = δαβ , Bαi B

i
a = 0, Bai B

i
α = 0, Bai B

i
b = δab (16)

BiαB
α
j +BiaB

a
j = δij . (17)

Now after contracting

g̃αβ = gij(x(u), y(u, v))Bijαβ (18)

by g̃βγBαk and taking into account (15.a) and (17) we have :

Bγk = gkjB
j
β g̃
βγ (19)

After contracting (12) by Bαj and by using (17), we deduce that (13) is Locally
expressed by :

∂

∂yj
= Bαj

∂

∂vα
+BajBa (20)

Finally, contracting (15.b) by Bbk and due to (17) and (15.a) we infer:

Bai = gijB
j
bδ
ba (21)

also, we have :
g̃αβ = gijBαi B

β
j (22)

Consider the nonlinear connection N = (Gij) on M ′. According to Bejancu
and Farran (2000), the nonlinear connection N , enables us to define an almost
product structure on M ′ as follows. Consider a vector field X on M ′. Then
locally we have X = Xi δ

δxi + Ẋi ∂
∂yi .

So, we define: Q : Γ(TM ′) −→ Γ(TM ′) such that: QX = Ẋi δ
δxi +Xi ∂

∂yi . We
call Q the associate almost product structure to the nonlinear connection N .
We denote by F(M ′) the algebra of smooth functions on M ′. Then by using g,
the metric associated to the semispray S and the projection morphisms v and
h of TM ′ on VM ′ and HM ′ respectively, we define

G : Γ(TM ′)× Γ(TM ′) −→ F(M ′)

G(X,Y ) = g(vX, vY ) + g(QhX,QhY ), ∀ X,Y ∈ Γ(TM ′).

We call G the Sasaki metric on M ′.

Let G be the Sasaki metric on M ′. Then on each coordinate neighborhood
of M̃ ′ we define the functions: Nβ

α = g̃βγG( ∂
∂uα ,

∂
∂vγ ).
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Hence, we obtain a nonlinear connection HM̃ ′ = (Nβ
α ) on M̃ ′. As a distribu-

tion, HM̃ ′ is locally spanned by:

δ

δuα
=

∂

∂uα
−Nβ

α

∂

∂vβ
(23)

We call Ñ = (Nβ
α ) the induced non-linear connection on M̃ ′.

Lemma 3.1. The induced nonlinear connection Ñ = (Nβ
α ) is locally expressed

as follows:
Nβ
α = Bβi (Biα0 +BjαG

i
j) (24)

Proof. Considering the Sasaki metric G on M ′, on each coordinate neighbor-
hood of M̃ ′ we have:

Nβ
α = g̃βγG

( ∂

∂uα
,
∂

∂vγ

)
= g̃βγG

(
Biα

∂

∂xi
+Biα0

∂

∂yi
, Bjγ

∂

∂yj

)
= g̃βγG

(
Biα
( δ

δxi
+Gki

∂

∂yk
)

+Biα0
∂

∂yi
, Bjγ

∂

∂yj

)
= g̃βγ

(
G
(
Biα

δ

δxi
, Bjγ

∂

∂yj

)
+G

(
BiαG

k
i

∂

∂yk
, Bjγ

∂

∂yj

)

+ G
(
Biα0

∂

∂yi
, Bjγ

∂

∂yj

))

= g̃βγ

(
G
(
BiαG

k
i

∂

∂yk
, Bjγ

∂

∂yj

)
+G

(
Biα0

∂

∂yi
, Bjγ

∂

∂yj

))

= g̃βγ
(
BiαG

k
iB

j
γgkj +Biα0B

j
γgij

)
Now by contracting (10) by g̃βγBαk and taking into account (15) and (17), it is
deduced that: Bγk = gkjB

j
β g̃
βγ . Consequently, we have:

Nβ
α = BβkG

k
iB

i
α +Biα0B

β
i = Bβi G

k
iB

j
α +Bβi B

i
α0 = Bβi (Biα0 +BjαG

i
j).

Moreover, by direct calculations we infer that :

dxi = Biαdu
α (25)

dyi = Biα0du
α +Biαdv

α (26)
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We define 1- forms on M̃ ′ as follows :

δvα = dvα +Nα
β du

β (27)

also, δvα = Bαj δy
j , where δyj = dyj +Gjidx

i.

Now, according to lemma 3.1. we can prove the following theorem:

Theorem 3.1. As HM ′ ⊕ V M̃ ′⊥ is orthogonal complementary vector bundle
to V M̃ ′ in TM ′ and HM̃ ′ is orthogonal to V M̃ ′, it is deduced that HM̃ ′
is the vector subbundle of HM ′ ⊕ V M̃ ′⊥. In other words, the local frame

field
{ δ

δuα

}m
α=1

of the induced nonlinear connection HM̃ ′ =
(
Nβ
α

)
is locally

expressed by:
δ

δuα
= Biα

δ

δxi
+Ha

αBa (28)

where Ha
α = Bai (Biα0 +BjαG

i
j).

Proof. Taking into account relations (11), (12), (23) and identity (24) in lemma
3.1. we have:

δ

δuα
=

∂

∂uα
−Nβ

α

∂

∂vβ

= Biα
∂

∂xi
+Biα0

∂

∂yi
−Bβi

(
Biα0 +BjαG

i
j

)
Bkβ

∂

∂yk

(29)

Now, by inserting
∂

∂xi
=

δ

δxi
+Gji

∂

∂yj
in relation (29) we have:

δ

δuα
= Biα

δ

δxi
+BiαG

j
i

∂

∂yj
+Biα0

∂

∂yi
−Bβj B

i
αG

j
iB

k
β

∂

∂yk
−Bβi B

k
βB

i
α0

∂

∂yk
(30)

Consequently, according to identities (16) and (17) it is deduced that:

δ

δuα
= Biα

δ

δxi
+BiαG

k
i

∂

∂yk
+Biα0

∂

∂yi
−BiαδkjG

j
i

∂

∂yk
+BiαB

k
aB

a
jG

j
i

∂

∂yk

−δki Biα0
∂

∂yk
+BkaB

a
i B

i
α0

∂

∂yk

= Biα
δ

δxi
+Bai

(
Biα0 +BjαG

i
j

)
Ba

= Biα
δ

δxi
+Ha

αBa.

(31)
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As we declared above, the metric associated to the semispray S has a fun-
damental role in defining the induced nonlinear connection on M ′. We call
(M̃, Ñ = (Nα

β )) the induced SODE submanifold of (M,N = (Gij)).

We have already defined the induced nonlinear connection HM̃ ′ = (Nβ
α )

with local coefficients given by (24). Let ∇ be a linear connection on VM ′.
Hence, we proceed with the study of the geometric objects induced by ∇ on
M̃ . Let ∇̃ be a linear connection on V M̃ ′. We define the linear connection

∇̃ : Γ(TM̃ ′)× Γ(V M̃ ′) −→ Γ(V M̃ ′)

such that:
∇ δ

δuβ

∂

∂vα
= ∇̃ δ

δuβ

∂

∂vα
+Ha

αβBa (32)

∇ ∂
∂vα

∂

∂vβ
= ∇̃ ∂

∂vβ

∂

∂vα
+ V aαβBa (33)

∇̃ δ

δuβ

∂

∂vα
= F̃ γαβ

∂

∂vγ
, ∇̃ ∂

∂vβ

∂

∂vα
= C̃γαβ

∂

∂vγ
(34)

If we consider the Berwarld connection (Gij ,∇) = (Gij , G
i
jk, 0) onM , where

Gij are the local coefficients of the canonical non-linear connection on M ′, then
the local coefficients of the ∇̃ are given by

F̃ γαβ = Bγk (Bkαβ +GkijB
ij
αβ) , C̃γαβ = 0 (35)

Ha
αβ = Bak(Bkαβ +GkijB

ij
αβ) , V aαβ = 0 (36)

Also, we have
F̃ γαεv

α = F̃ γεβv
β = Nγ

ε (37)

Ha
αεv

α = Ha
εβv

β = Ha
ε (38)

So, we can define the induced Berwarld connection on the submanifold M̃ ′.

3.2 Totally Geodesic Induced SODE Submanifolds

As we stated, the semispray S = yi ∂
∂xi − 2Gi(x, y) ∂

∂yi , determines a non-

linear connection N with local coefficients Gij = ∂Gi

∂yj . We call N the nonlinear
connection of the semispray S. Conversely, any nonlinear connection deter-
mines a semispray. Certainly the semispray of a nonlinear connection and the
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nonlinear connection of a semispray are different notions. By a simple compu-
tation, it can be shown that if Gij are the coefficients of the nonlinear connection
N , then:

2G1i(x, y) = Gij(x, y)yj (39)

G1i is called the semispray of the nonlinear connection N . This means that
in local coordinates the semispray of the nonlinear connection N with local
coefficients Gij is given by:

S1 = yi
∂

∂xi
− 2G1i(x, y)

∂

∂yi
(40)

Similarly, for the induced nonlinear connection Ñ = (Nα
β ), we can show that:

2N1α(u, v) = Nα
β (u, v)vβ (41)

So in local coordinates the semispray of Ñ = (Nα
β ) is defined as follows:

S̃1 = vα
∂

∂uα
− 2N1α(u, v)

∂

∂vα
(42)

Lemma 3.2. Let S be semispray and N the nonlinear connection of S. Let S1

be the semispray of N . Then the coefficient functions Gi(x, y) are homogeneous
of order two if and only if S = S1.

Proof. Let Gi be the local coefficients of the semispray S. Then N , the non-
linear connection of S has the local coefficients Gij = ∂Gi

∂yj . S
1 the semispray

of N has the local coefficients 2G1i = Gijy
j = (∂G

i

∂yj )yj . We have S = S1 if

and only if Gi = G1i, this is equivalent to 2Gi = yj(∂G
i

∂yj ) which according to
Euler’s Theorem means that coefficient functions Gi(x, y) are homogeneous of
order two.

Lemma 3.3. Let N = (Gkj ) be the nonlinear connection on M ′ and Ñ = (Nγ
α)

be the induced nonlinear connection on M̃ ′. Then the following relation holds:

BkγN
γ
α +BkaH

a
α = Bkα0 +BjαG

k
j (43)

Proof. We had the following relations:

(a) : Nγ
α = Bγi (Biα0 +BjαG

i
j) (b) : Ha

α = Bai (Biα0 +BjαG
i
j)

By contracting (a) and (b) by Bkγ and Bka respectively, and then adding the
results and due to (16) and (17), relation (43) will be obtained.
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Let (M̃, (Nα
β )) be the induced SODE submanifold of (M, (Gij)). Then M̃ is

said to be totally geodesic submanifold of M if any geodesic of M̃ is a geodesic
of M .

Theorem 3.2. Let (M̃, Ñ = (Nα
β )) be the induced SODE submanifold of

(M,N = (Gij)). Let S1 = yi ∂
∂xi−2G1i(x, y) ∂

∂yi and S̃
1 = vα ∂

∂uα−2N1α(u, v) ∂
∂vα

be the semisprays of the nonlinear connections N and Ñ , respectively. Then
M̃ is a totally geodesic submanifold of M if and only if Ha

0 = 0.

Proof. By contracting (43) with vα and due to (8.d) we have:

BkγN
γ
αv

α +BkaH
a
αv

α = Bkαγv
γvα +BjαG

k
j v
α (44)

By setting Ha
0 := Ha

αv
α and by using (8.a) and (41) we have:

2BkγN
1γ +BkaH

a
0 = Bkαγv

γvα + yjGkj (45)

By setting vγ := duγ

dt , v
α := duα

dt and applying (39) we obtain:

2BkγN
1γ +BkaH

a
0 = Bkαγ

duγ

dt
.
duα

dt
+ 2G1k (46)

By adding Bkγ
d2uγ

dt2 to (46) we have:

Bkγ (
d2uγ

dt2
+ 2N1γ) +BkaH

a
0 = Bkγ

d2uγ

dt2
+Bkαγ

duγ

dt
.
duα

dt
+ 2G1k (47)

Since dxk

dt = Bkγ
duγ

dt , d2xk

dt2 = Bkαγ
duγ

dt
duα

dt + Bkγ
d2uγ

dt2 , we will obtain the
following relation:

Bkγ (
d2uγ

dt2
+ 2N1γ) +BkaH

a
0 =

d2xk

dt2
+ 2G1k. (48)

By lemma (3.3) and taking into account the relation (48), the proof will be
completed.

4. Concluding Remarks

Geometric analysis of the tangent bundle (TM, π,M) over a smooth mani-
foldM can be regarded as one of the most significant field of modern differential
geometry and has considerable applications in various problems specifically in
the theory of physical fields. This importance provides a constructive setting
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for the progress of novel concepts and geometric structures such as systems of
second order differential equations (SODE), metric structures, semisprays and
nonlinear connections. Therefore, analysis of the notions declared above can
be reckoned as a powerful tool for the exhaustive investigation of the geometric
properties of a tangent bundle. In the last decades an increasing number of
researches has been dedicated to the qualitative investigation of the solutions of
systems of (non-)autonomous second (higher) order ordinary (partial) differen-
tial equations fields via some corresponding geometric structures. The notable
fact regarding these entire investigations is the significant demand of a unify-
ing geometric setting for a differential equation field considering the associated
geometric structures and invariants.

In this paper, we have comprehensively analyzed the structure of totally
geodesic SODE submanifolds via geometric point of view. Significantly, inves-
tigation of the induced SODE structure on submanifolds is our principal goal
in current research. Recently, the problem of metrizability has been studied
from several aspects. Indeed a semispray is called metrizable if the paths of
the semispray are just the geodesics of some metric space. The problem of
compatibility between a system of second order differential equations and a
metric structure on tangent bundle, has been studied by many authors and it
is known as one of the Helmholtz conditions from the inverse problem of La-
grangian mechanic. In this manuscript, it is mainly illustrated that the metric
which is resulted from the metrizability of a given semispray, plays a funda-
mental role in inducing SODE structure on submanifolds. Specifically, we have
presented a necessary and sufficient condition for an SODE submanifold to be
totally geodesic.
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